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MULTIGRID ANALYSIS OF FINITE ELEMENT METHODS 
WITH NUMERICAL INTEGRATION 

CHARLES I. GOLDSTEIN 

ABSTRACT. We analyze multigrid convergence rates when elliptic boundary 
value problems are discretized using finite element methods with numerical 
integration. The resulting discrete problem does not fall into the standard vari- 
ational framework for analyzing multigrid methods since the bilinear forms on 
different grid levels are not suitably related to each other. We first discuss exten- 
sions of the standard variational multigrid theory and then apply these results 
to the case of numerical quadrature. In particular, it is shown that the Y- 
cycle algorithm has a convergence rate independent of grid size under suitable 
conditions. 

1. INTRODUCTION 

Multigrid methods provide a very powerful tool for solving the system of 
equations resulting from the discretization of elliptic boundary value problems 
in two or three dimensions. We refer to [1-3] and references cited there for 
comprehensive treatments of various multigrid methods. There has been a great 
deal of research devoted to an analysis of the convergence properties of these 
methods. One approach, based on Fourier analysis, is applicable to a rather 
limited number of situations (see, e.g., [1, 2, 4, 5]). A more general approach is 
based on a variational formulation of multigrid (see [2, 3, 6-12] and references 
cited therein). This variational framework includes the system of equations 
resulting from finite element discretizations in general domains. 

In this paper, we analyze the convergence of multigrid methods for symmet- 
ric uniformly elliptic boundary value problems when numerical quadrature is 
used to approximately evaluate the finite element stiffness matrix (see [13-15]). 
Numerical integration is often important for the practical implementation of 
finite element methods and is commonly present in finite element computer 
codes. (Furthermore, many finite difference schemes can be obtained using a 
finite element method with numerical quadrature.) When numerial quadrature 
is used, the resulting discrete problem does not fall into the variational frame- 
work cited above, since the bilinear forms on different grid levels are not suitably 
related to each other (e.g., condition (A.2) in ?2 fails to hold). 
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An extension of the standard variational multigrid framework was recently 
provided in [ 16]. Results in [ 16] as well as additional results proved in this paper 
are employed in ?4 to obtain multigrid estimates for the finite element method 
with numerical quadrature. Note that an abstract multigrid framework, such as 
that discussed in ?3 below, can be very useful in connection with various other 
"variational crimes" that occur in connection with practical implementations 
of finite element and multigrid methods. Some examples of this are presented 
and analyzed in [16]. We also refer to [17] for a multigrid analysis of some 
nonconforming finite element methods for which the sequence of grids is not 
nested and (A.2) does not hold. 

We now outline the remainder of the paper. In ?2, we briefly describe a 
variational formulation of the multigrid method and state some known conver- 
gence results. We restrict our discussion throughout this paper to the standard 
Y cycle (i.e., the same number of smoothings is used on all grid levels) and 
variable Y cycle (i.e., the number of smoothings is increased geometrically on 
coarser levels), although analogs of many of the results hold for the Y cycle 
as well. We consider both the symmetric and nonsymmetric multigrid opera- 

s N S 
tors, Bs and BJ, respectively, where J + 1 is the number of grid levels. Bs 
corresponds to the multigrid algorithm for which the number of presmoothings 
(i.e., the smoothings occurring before the coarse grid correction) is equal to the 
number of postsmoothings on each grid level. BJ corresponds to the algorithm 
for which there is no postsmoothing on any grid level. 

Some of the assumptions in ?2 fail to hold when numerical quadrature is 
used and for many other practical situations. In ?3.1, we state some results 
proved in [16] for the symmetric operator Bs under weaker assumptions than 
in ?2. Additional results are stated in ?3.2 that hold for both BJ and Bs under 
suitable assumptions. These results are proved in the Appendix. 

The main results are contained in ?4, where we use the results in ?3 to analyze 
the multigrid method when a sufficiently accurate quadrature scheme is used to 
compute the finite element stiffness matrix (see (4.5)). An accuracy condition 
of this kind is also required for the finite element error analysis of numerical 
integration and is referred to as the "patch test" in [13, 14]. It is proved in ?4.1, 
using methods and results from this finite element analysis, that the assumptions 
in ?3 are satisfied. In Theorem 4.2, we provide bounds on the condition number 
of B SAJ , indicating that Bjs can be used effectively as a preconditioner even 
with only one presmoothing on all grid levels, where Ai is the discrete elliptic 

operator. It is proved in Theorems 4.3S and 4.3N for BJ= Bs and BJ= 

respectively, that I - B AJ is a contraction operator with contraction 
number independent of J provided suitable assumptions hold. For the variable 
Y cycle it is assumed that ha m 2 is sufficiently small and shown that the 
contraction number is bounded by 3 + O(hal m-2), where 3 is the contraction 
number without numerical integration, h = hi is the grid size, m is the number 
of presmoothings on the finest grid level, and or and a2 are positive constants 
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that depend on the accuracy of the quadrature scheme. An analogous result is 
proved for the standard %. cycle, except that h is replaced by the grid size on 
the coarsest grid level on which the stiffness matrix is not computed exactly. 

2. MULTIGRID ALGORITHMS 

In this section, we briefly describe the multigrid method using the variational 
framework in [9] and then state some known convergence results (see Theorem 
2.1). We refer to [2, 3, 6-12] for detailed treatments of variational multigrid 
methods. 

2.1. Definitions and assumptions. Suppose we have a sequence of finite-dimen- 
sional vector spaces, MO , M1, ... , MJ, and corresponding linear operators Ij: 

MVI1- Mj, 1 < j< J. Furthermore, suppose we are given positive definite 
symmetric bilinear forms Aj(, ) and (, )j, defined on Mj x M. for each 
j with corresponding norms denoted by 11 IA1 and 11 llj, respectively. The 
positive definite symmetric operator Ai: M1 M- is defined by 

(2. 1a) (Ai V W)j _ Ai.(V , W) 1V V W E Mj. 

We also define operators Pi, M1 -1 and P J O-I: Mj Mj I as: 

(2.lb) Aj.I(Pj_IV, W) Aj(V,IjW) 

and 

(2.1c) (F,?1V, W)_1 =(V,IjW)j VVEeMj, WEMjl 

It follows from (2.1a) that 

(2. ld) IIA Vllj = max JAj(V W)l i i4WEMj 11~I W111 
Remark 2.1. Suppose, for example, that Mj is a conforming finite element 
space with mesh size hj, Aj ( , ) _ A( , ) corresponds to the bilinear form for 

the variational problem, and ( , )j is equivalent to the L2 inner product. In 
this case, the spaces {AMj} are typically nested, i.e., MAd) C Aj, and can 
be chosen to be the injection operator. 

To define the smoothing process, we require a linear operator R1 : MA MA 
for j = 1, . .. , J. We assume that R1 is symmetric in the (, )j inner product 
and define 

(2.2) Kj _ I-RiA, 

where I denotes the identity operator. We next define a multigrid operator 
Bj : Mj -- Mj by induction for each j. For each g in MjA, Bjg is to 

approximate U = Aj 1g. 
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Definition 2.1. Set Bo = A-1. If j > 0, assume that Bj-1 has been defined 
and define Bjg for each g in Mj as follows (with prescribed integers mj > 0 
and n? > 0): 

(i) Set U0 = 0. 
(ii) Define Ul for l= 1, ...,m by 

(2.3) U _ U +Rj(g-A1U ). 

(iii) Define Um'+ +_ um +MIjq, where q is definedby 

(2.4) q Bj P,0l(g -A U mi). 

(iv) Set Bjg Umi+ni+l, where UI is defined for 1 = m + 2 M' + 
n1 + l by (2.3). 

This algorithm is referred to as a multigrid 2r cycle. v-cycle algorithms can 
be defined analogously (see, e.g., [2, 3] or [9]). Since the initial iterate is zero, 
Bj defines a linear operator acting in Mj . Ij is referred to as a prolongation 
operator and its adjoint Pj'- defined by (2. lb) is a restriction operator. 

Note that there are mj "presmoothings" in step (ii) and nj "postsmoothings" 

in step (iv). We consider the following two operators B and BJ: 

(2.5S) B_B s if n. =mj, j1, ..., J, 
S 

and 

(2.5N) BJ-BJN if nj =0O, j= 1, ...,5 J. 

It can be seen (e.g., using an induction argument and (2.7S) below) that Bjs 
defines a symmetric operator with respect to Ai(, ) , 

For the usual "-cycle algorithm, it is assumed that 

(2.6a) m1=m>1, j=1,...,J. 

We refer to this algorithm simply as the ' cycle. Convergence estimates can 
sometimes be improved when the number of smoothings m1 is increased on 
coarser grids. Such an algorithm, referred to as a variable Y cycle, was defined 
in [9] by the following condition: 

(2.6b) om j?mmj1/ <3 m, j=2,...,J, 

where Po and fl, are greater than one and independent of j. 
It is easily seen, using (2.2) and (2.3), that Kj is an iteration matrix for R, 

i.e., 

U-U =Kj(U-U) forl=1, ..., m. 

The following important recurrence relations follow readily, using the preceding 
equality [9]: 

(2.7N) I-B7A1 = [(I- jP1) + I _(I- BJ1Aj1)P31]K7 
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and 
S M. S M. 

(2.7S) I-B1A1 = K J[(I - IP _1) + Ij(I - BJ_Aj,)Pj_,]KJ 

In addition to equalities (2.7N,S), the following assumption on the smoothing 
operator Rj for each j plays a key role in the analysis: 

(A. 1) The spectrum of the operator Kj (with respect to the Aj inner product) is 

contained in [0, 1) . Furthermore, there is a positive constant C, independent 
of j, such that 

AJ .lUg < C(RjU, U)j VU E Mj, 
where Ai is the largest eigenvalue of A1. 

It was shown in [3, 9] and other references cited above that commonly used 
relaxation schemes (including Jacobi iteration) satisfy (A. 1). It follows from 
the spectral properties of K1 that 

(2.8) IIKjUIIA1 < ? UIIUA VU EM, j= , ...,J. 

The following lemma is crucial to the multigrid analysis. 

Lemma 2.1. Suppose that (A. 1) holds. Then 

(2.9) At '11A K7J 'Ul2 < C(2mj) Aj((I-K, i) U) < C(2m )1IIUII2, J - 

where mi > 1 and C is the constant in (A.1). 

For a proof of the first estimate in (2.9), we refer to [9] (see (3.15) and 
(3.16) in the proof of Theorem 1 there). The last estimate in (2.9) then follows 
immediately, since Kj is a nonnegative operator by (A. 1). 

2.2. Convergence estimates. In Theorem 2.1 below, we state convergence es- 
N SN timates for the multigrid operators BJ and Bs. For BJ, the convergence 

estimate is expressed in the form 

(2.10ON) II (I-BJA AJ)UIIA < (51IU112 VU E MJ 

with suitable values of 3 E [0, 1). For Bj, the convergence estimate is ex- 
pressed in the form 

(2.1OS) 0 < AJ((I - BSAJ)U, U) 
2 

IIUIIA VU E MJ. 

Estimates (2.10S,N) can be proved using the following additional assump- 
tions: 

(A.2) Aj(IjU,IV) =A_j (U, V) VU, VEM)1, j= 1, ..., J, 

and 

(A.3) A;((I - IjP-1)U, U) < C1I) IIIA UI12 VU EMj, j= 1, ..., J, 

where C1 is independent of j. Condition (A.2) (or more generally, (A.2S) 
below) implies that the form Aj_1( , ) on the space M1-I can be related to 
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that on M.. It follows from (A.2S) that the operator norm of Ii and its adjoint 
Pj_1 is bounded by one. This implies that the left side of (A.3) is nonnegative. 
Furthermore, the first inequality in (2.1 OS) follows readily from (A.2S), (2.7S), 
and induction. 

Theorem 2.1. Suppose that BJ is the /-cycle or variable 7-cycle algorithm 
defined by Definition 2.1, m mj > 1, and conditions (A.1)-(A.3) hold. If 
(2.5S) holds, then (2.10S) holds with 

(2.1 1) b = CO/(CO + m) 

where CO = CC1/2 is independent of J and m. If (2.5N) holds, then (2.1ON) 
holds with 3 given by (2.1 1). 

This result was first proved in [6] for the 7 cycle. The variable " cycle 
was analyzed in [9]. 

Remark 2.2. When multigrid is applied to the finite element method as in Re- 
mark 2.1, condition (A.2) follows immediately (assuming Aj( , ) _ A( , ) is 
calculated exactly on each grid level). This is not true in general when Aj ( , ) is 
approximated using numerical quadrature. If we assume a quasi-uniform mesh 
for each j, with mesh size hi < h1_I, then it follows from standard inverse 
inequalities [13] that 

(2.12) C-h72 <)L.<Ch2 

In this case, (A.3) follows using standard finite element H1 error estimates, 
assuming H2 regularity for solutions of the given boundary value problem and 
each Aj(, ) A(, ) is calculated exactly (see, e.g., [2, 3] or [9]). Hence, 
Theorem 2.1 is applicable in this case. 7-cycle convergence estimates under 
weaker regularity assumptions were proved in [9, 12]. 

Note. We shall use the same letter C to denote different constants, independent 
of j, when there is no danger of confusion. 

An analogue of Theorem 2.1 was proved in [16] for the symmetric operator 
Bs with (A.2) replaced by the following more general condition: 

(A.2S) Aj(IjU, IjU) < Aj_1(U, U) VU EM 1, = 1, ...,J. 

In the next section, we consider a more general multigrid framework for which 
(A.2S) does not hold. Such a generalization is required for the application to 
numerical quadrature in ?4 (as well as other important applications). 

3. EXTENSIONS OF THE THEORY 

In this section we state some multigrid results with weaker assumptions than 
(A.2S) and (A.3). These results will be applied to numerical quadrature in 
the next section. The results in ?3.1 for the symmetric operator BJ follow 
immediately from the results and techniques in [16]. In ?3.2, we state some 
convergence results proved in the Appendix for both BJ and Bs. 
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3.1. Symmetric multigrid operators. We assume that (A. 1) holds. As shown in 
[16], BSAJ is a positive definite symmetric operator with respect to AJ (, ) for 
any mj > 1 . Hence Bs can be used as a preconditioner for an iterative method 
such as the conjugate gradient method. Estimates of the convergence rate of 
the resulting preconditioned algorithm depend on estimates for the largest and 
smallest eigenvalues of BsAJ [18]. These eigenvalues, 1, and 10, satisfy the 
inequalities 

(3.1) ?10IUII2 < AJ(BsAJU, U) < q11 IIUll2 VU E MJ. 

If (3.1 ) holds for some II, 10 > 0, the condition number K satisfies K(BsAJ) 

= O(I/0) and the preconditioned conjugate gradient method converges in 

O((11/10)1/2) iterations to a prescribed accuracy. The following generalization 
of (A. 3) was assumed in [16] in order to estimate the positive constants, 10 and 

1li. 

(A.4) There is an a E (O, 1] such that VUEM, = 1, ...,J, we have 

JA((-P_)U ) < -(J1 IIA U11 2)aAj(U, U)1 a. 

The next two theorems were proved in [16] and show that K(BSAJ) = 0(1) 
for the variable Y cycle and 0(1 + j(la)/a) for the Y cycle as J -> x . 

Theorem 3.1. Suppose that Bs is the symmetric variable '-cycle algorithm 
defined by Definition 2.1 and (2.6b). Assume that (A. 1) and (A.4) hold. Then 
for any m _ mj 1, the constants 10 and r1 in (3.1) satisfy 

a 
(3.2a) ?10 > m 

and 

ma (3.2b) Cl-< ma 

where CO is independent of J and m. Hence, K(BsAj) = 0(1) as J - x. 

To prove an analogous result for the standard Y-cycle algorithm, an addi- 
tional condition was assumed in [16] that can be stated as follows: 

(3.3a) Aj((I - IjPj1 I)U, U) > -E1(AU, V)---C2jIaIIUIIA VU E M . 

We shall also find the following condition useful: 

Aj((I - IjPj_,)U, U) >-Ej(U? Aj) 
(3.3b) --C A_ (a+112) /II||AjUglA VU E J 
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We make the following assumption for the remainder of this section: 

(A.5) There are positive constants, a and C2, independent of j = 1, ..., J, 
such that either (3.3a) or (3.3b) holds. 

We now state an analogue of Theorem 3.1 for the 7 cycle. This result 
follows from Theorem 8 in [16] (since (3.3a) follows from (3.3b) by Lemma 
A. 1 in the Appendix). 

Theorem 3.2. Suppose that Bs is the symmetric 27-cycle algorithm defined by 
Definition 2.1 and (2.6a). Assume that (A.1), (A.4), and (A.5) hold and A 
satisfies 

(3.4) Ai < y I J 

for some y < 1 and independent of j. Then for any m mj >1, r in (3.1) 
can be chosen independently of J, and no satisfies 

(3.5) >a no 
cj(-a/a+ ma 

where CO is independent of J and m. Hence, 

(3.6) K(BsAi) = 0(1 + J(1a)/a) as J .-+ . 

Since Ai is positive definite symmetric, it follows that 

(3.7) Ali I 3lAi Ul i VU E Mi 

with C3 > 0. We assume that C3 is independent of j, or equivalently, that 
the smallest eigenvalue of A1 is bounded away from zero, uniformly for all j. 
This is the case in typical applications (e.g., 11 llj and 11 IIAi are respectively 

equivalent to 1IL2 and 1 'H'' uniformly in j for the application in ?4 and 
elsewhere). 

5 
We next state a generalization of Theorem 2.1 with BJ = Bi . The proof of 

this result is a simple consequence of Theorems 3.1 and 3.2 and is included in 
the Appendix for the sake of completeness. 

Theorem 3.3. Suppose that (A. 1), (A.4), (A.5), and (3.4) hold. Then 

(3.8a) AJ((I - BsAj)U, U) < 4(2),IUII2 VU E MJ, 

where 
(2) COj(l-a)/a 

(3.8b) - 
C(-a)/a + a for the % cycle 

and 
3(2) C0 

(3.8c) )= a for the variable %/ cycle. 

Furthermore, 

(3.9a) Aj((I - BsAJ)U, U) > (1 -_ 6)IIUII2 
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with il defined as follows. If (3.3a) holds and ao < 1 satisfies 0 < ao< <, then 

(3.9b) r1 = (1 + CC2M] -)oALJa )) < 1 + CC2MJaO 
j=1 

If (3.3b) holds and ao < 1/2 satisfies 0 < ao < a, then 

J 

(3.9c) 11= fJ( + CC2Mi m( / o ( <aO)) ? 1 + CC2m- 
j=l 

Finally, 

(3.1Oa) IAj((I - B4AJ)U, U)I < cJ5IIUI2 

where 

(3. 1 Ob) d = max(6(2), 

and 3i < 1 for mi sufficiently large. 

Remark 3.1. If C2 = 0 in (3.3a) or (3.3b), then (A.5) reduces to (A.2S). As 
noted earlier, (2.12) holds in many applications. Hence, condition (A.5) is a 
perturbation of (A.2S) up to some power of the grid size hi. It now follows 
that the additional error due to this perturbation at each grid level is bounded 
by O(h atmfa2) (see the second term in the parentheses in (3.9b) or (3.9c)), 
where the positive exponents, a1 and a2, can be calculated from Ej in (3.3a) 
or (3.3b). Analogous assertions hold for Theorems 3.4N and 3.4S below. We 
shall see in ?4 how Ej depends on the accuracy of the numerical quadrature 
scheme on the jth grid level. 

3.2. Additional results. In Theorem 3.4N below, we state a generalization of 
Theorem 2.1 for the nonsymmetric operator BJ corresponding to the r or 
variable %/ cycle. To this end, we replace (A.4) by the following perturbation 
of (A.3): 

(A.6) There is a positive constant, C1, independent of j = 1, . . ., J, such that 

(3.11) Aj((I-IjPj_1)U, U) < C1)j-'IIAj UI12 + Ej(U, )j) 

with Ej(U, Aj) defined by either (3.3a) or (3.3b). 

We also replace (A.5) by the following perturbation of condition (A.2): 

(A.7) There are positive constants, a and C2, independent of j = 1,..., J, 
such that either 

(3.12a) 11( - PJ-Ij)UIIA_ FJ(U, 1)-)C2 iUIIUIIA 

or 

(3.12b) I( - Pj_ljU)IIA__ < Fj(U, kAj) _ C2Ag-(a+l/2)IlA. 1 Ull_-1 
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The following theorem is proved in the Appendix, assuming C1 IA < j-1 - 

?J I < CA'71 for each j. This estimate typically holds in applications (see, 
e.g., (2.12)). Furthermore, we may assume that a is the same constant in 

(A.5)-(A.7). 

Theorem 3.4N. Assume that (A.1), (A.6), (A.7), and (3.4) hold. Also assume 
that 0 < c0 < a, where a is the constant in (A.6) and (A.7) and a0 < 1. Then 

(3.13a) II|(I - BJA )UI12 < 2Slul VU E MJ 

with 
J 

(3.1 3b) 3s = 3 + CC2 EJLI(a%)mI < 

j=1 

Here, a is expressed in terms of the constants C and C1 in (A. 1) and (A.6) by 

(3.14a) 3 = CO/(CO + mi), 

where 

(3.14b) CO = CC1 /2. 

Hence, for mi sufficiently large (and independent of J), we have 

(3.15) a< 1. 

Thus, I - BNAJ is a contraction operator for mJ sufficiently large with 
contraction number independent of J. Note that when C2 is zero in (3.3) and 

(3.12), Theorem 3.4N is the same as Theorem 2.1 with BJ = B> . Finally, we 

state an analogue of Theorem 3.4N for Bs with (A.7) replaced by the more 
general condition (A.5). The proof of this result is similar to that of Theorem 
3.4N and is also given in the Appendix. 

Theorem 3.4S. Assume that the hypotheses of Theorem 3.4 hold with (A.7) re- 
placed by (A.5). Then 

(3.16a) AJ((I - BsAAJ)U, U) < 6(2)IIU1I2 VU e MJ 

where 
J 

(3.16b) 3(2) - 3 + CC Z,-(0-a%)mI%. 
j=1 

Here, 3 is again given by (3.14a,b). Furthermore, 

(3.17a) lAj((I - BsAJ)U, U)I < UII VU E MJ, 

where 

(3.17b) 3 = max( (2)1 - 1) < Cmj 
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with i1 given by (3.9b) or (3.9c). Hence, for mj sufficiently large (and inde- 
pendent of J), we have 

(3.17c) 3 < 1. 

4. NUMERICAL INTEGRATION 

In this section, we use the results in ?3 to establish multigrid convergence es- 
timates for the system of linear equations arising when a numerical quadrature 
scheme is used to compute the stiffness matrix for the finite element discretiza- 
tion of the following two-dimensional elliptic boundary value problem: 

(O Au X a ( Ou\ 

_ x I-t 11 -) +- a12-) (4.l1a) 102 Oxa19 / 

+ (a2 )+ (a22 a) } + au = f in Q, 

(4.1b) u=0 onal, 

where Q is a convex polygon, f E L 2(Q), the coefficients are real-valued, 
a(x) > 0 in Q _ Q u 8Q, and x = (xI, x2) E Q. We assume that the operator 
is uniformly elliptic, i.e., there is a positive constant C such that 

(4.1cj C (<2 + 2) < a,141 + 2a24 + a22 2 2 

for each x E Q and real 1', 42 . 
In ?4.1, we discuss the finite element method with numerical quadrature and 

present some preliminary results. In particular, we show in Theorem 4.1 that 
conditions (A.4)-(A.7) hold. In ?4.2, we prove our multigrid results. 

Note. We consider Dirichlet boundary conditions and triangular partitions. 
However, analogous results may be proved in the same way for Neumann and 
other boundary conditions as well as rectangular partitions and more general 
domains, assuming H2 regularity (see (4.2) below). 

4.1. Quadrature estimates. We begin by introducing some notation. Let Hs(f2) 
denote the Sobolev space consisting of square-integrable functions with square- 
integrable derivatives up to order s > 0, and let 11 IIHs_ IIHS(n) denote the 

corresponding Sobolev norm [19]. The inner product and norm in L 2() = 
H?(Q) are denoted by (, ) and 11 IIL2 I_ IIL2(Q) respectively. Since Q is 
convex, we have for sufficiently smooth coefficients in (4.1a), 

(4.2) IIUIIH2 < CIIfIIL2. 

We consider the weak or variational formulation of (4.1a,b). The energy 
subspace HE c H1 (Q) consists of functions with vanishing trace on aQ . The 
solution of (4.1) satisfies 

E (4.3a) A(u, v)=(fv) VV EH 
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where for each v, w E HE, 

A(v, w)-f (al I + a12 (, a" + &V&W) 

+a24av 
w 

+ av) dx. 

We next define the finite element spaces. Let pk (S) denote the set of poly- 
nomials of degree at most k defined on the set S, where k > 1 . Suppose that 
Q = U T TJ z gives a quasi-uniform triangulation TJ of Q into triangles T 

E with diam(T') = O(hj). The finite element space MJ c H consists of con- 
tinuous functions VJ vanishing on 9Q, such that each EJi _ V E P k(Ti. 

We assume that there is a nested sequence of spaces {Mj } such that each Mi 
is defined in the same way as MJ. To define these spaces, suppose there is a 
sequence of quasi-uniform triangulations Tj of Q, where the quasi-uniformity 
constants are independent of j. The triangulations are nested in the sense that 
any j_1 in T>1 can be written as a union of elements Tz in T1. We assume 
that diam(Ti) = 0(hj), where 

(4.4) hi- I = 2hj, j=l.. J. 

As in [13], we assume that Mi is obtained by means of an invertible affine 
mapping of each T E Tj onto a reference triangle T with diam(T) = 1 . Hence, 
each Vj' is mapped into a polynomial p E Pk(T) . We say that the finite element 
space M} has degree k. 

We approximate the exact integrals on the right side of (4.3b) by defining a 
numerical quadrature scheme Q, over each element Tz. E T1. To be specific, 
first consider the reference triangle T and approximate fT +(x*) dx as follows: 

L 

|O(x')dx' P: co 0(bl), 
1 ~~~1=1 

where the col are positive weights and the b1 E T are quadrature points. We 
then define the quadrature rule on each T by 

L 
] +(x) dx w co (b,1) 

Ij ~~~1=1 

where +(x) = +(x) and the weights Co' , and quadrature points bj are de- 
fined in terms of the col and b1 by means of the affine mapping from Ti onto T 

that takes each x in T1 into xi in T. We refer to [13, 14] for detailed descrip- 
tions of numerical integration in connection with the finite element method. 

We define the quadrature error functionals EJ by 

E.[+ -- lI q+(x)dx- Q1[q]X 
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Our main results require that the quadrature is exact for polynomials of suffi- 
ciently large degree. This was also the case for the finite element analysis (see 

2 c 
[13] for energy and L error estimates and [15] for L? estimates). To be 
precise, we assume that for each Tz E T 

Jk 2' 
(4.5) Ej[q] = 0 V, E P (T) 

for some integer L > 0. See [13, ?4.2] and references cited there for specific 
examples of schemes satisfying (4.5). 

Note. Condition (4.5) is known as the patch test. It was proved in [13] that when 
L = 0 in (4.5), optimal energy (i.e., H1) error estimates hold with sufficient 
regularity assumptions. Hence, e.g., when M3 consists of continuous piecewise 
linear functions, it suffices for the quadrature scheme to be exact for constants. 

To approximate the right side of (4.3b) using the quadrature scheme, we 
define the bilinear form Aj(, ) acting on Mj x Mj as follows, for each j = 

0,..., J and U, V E Mj: 

A (,)~~ja11UV+a (011+0(0 
A 

j~~~~~~ 
( U,V)-EQ gx l ax l +al (98x l a9 x2 a9 x2 

(4.6) 
+a aUaV + aUV] 

x2 x2 

We shall see from Lemma 4.1 below that Aj(, ) defines a positive definite 
symmetric bilinear form on Mj x Mj). Define the operator Ai: Mj -- Mj by 
(2.1a) with ( , )j ( , ). Denote the largest eigenvalue of Aj by )j. The 
approximate solution U E MJ of (4.1) satisfies 

(4.7) (AJ U, V) ,Aj(U, V) = (f, V) VV E M. 

We wish to solve (4.7) using the multigrid algorithm in ?2. Let R: M. -+ M. 
denote any smoothing operator satisfying (A. 1) with ( , )j _ ( , ). (Rj may 
be defined in the same way as for the finite element method without numerical 
integration.) Let Ii denote the injection operator from Mj-, into Mj and 
define Pj11 by 

(4.8) Aj_1(Pj_lU, V) =Aj(U, IjV) VU E Mj, V E M, . 

SN The multigrid operator Bj = B1 or BN is now defined by Definition 2.1. 
Condition (A.2S) does not hold in general for this case. 

Remark 4.1. To avoid the inversion of L2 Gram matrices, we may replace ( 
by other more convenient inner products that are equivalent to (, ), i.e., 

c- 111U112 < II U1122 < C11U112 VU E Mj. 

Specific forms (, )j satisfying this condition and smoothing operators sym- 
metric in ( , )j and satisfying (A.1) can be obtained, e.g., as in [2, 3, 7, 9]. 
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Now define A' by (2.1 a) and let A' denote the largest eigenvalue of A> . Since 
( , ) is equivalent to (, )j and the same form Aj(, ) is used to define both 
A. and A'., it follows by applying (2.1d) to both Aj and A' that 

C 1IIA Vllj < IAjVIIL2 < CIIA'Vllj VV E Mj. 
Similarly, it follows by applying the first equation in (4.13) below to both Ai 
and )' that 

C- IA, <)L <C)L. 

With Ij again denoting the injection operator, it now follows readily that (A.4)- 
(A.7) hold with respect to ( , )j if and only if they hold with respect to ( 
Hence it suffices to prove our results for (, 

We also require the orthogonal projection operator P_11: Mj M- -, cor- 

responding to the unperturbed bilinear form A(, ) in (4.3b): 

(4.9) A(Pj_,U,V)=A(U,IjV) VUEMj, VEMj31. 

Condition (A.2) clearly holds with respect to A(, ). Let Ai denote the largest 

eigenvalue of the operator Ai corresponding to A(, ). As noted in Remark 

2.2, (A.3) holds with Aj, 5 , etc. replaced by Aj, Aj, etc. The following result 

shows that A(, ) and Aj(, ) are equivalent bilinear forms. 

Lemma 4.1. Suppose that Mj has degree k > 1 and (4.5) holds with L = 0. 
Then 

(4.10) C k A(U, U) < Aj(U, U) < CA(U, U) VU E Mj 

Lemma 4.1 follows from [13, Theorem 4.1.2]. In view of (4.1c), (4.3b), and 
(4.10), there are positive constants, C and C', independent of j, such that 

(4.11)?CU IIUIIH?(U) 
< C 

VUeMA 
-1 IUIIAj < CI Ull A^< C || UIIHI(Q, U Mj. 

Lemma 4.2. Suppose that the hypotheses of Lemma 4.1 hold. Then there are 
positive constants, C and C', independent of j, such that 

(4.12) C h2 < C- Aj < Aj < CAj < C'h 

Proof. Since Ai and A are positive definite symmetric operators, we have 

A1(V,~V) A(V,~V) 
(4.13) i = max (V V) and i = max 

X VE ?0re (V, V) X O#VEMj (V, V) 

(4.12) now follows from (4.10), (4.13), and the quasi-uniformity of the mesh. o 

Let WO (S) denote the Sobolev space of real-valued functions v defined on 
S such that 

IIVIIws (s) = max ||D vIILoo(S) < 00, 
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where s is a nonnegative integer and Dflv denotes the weak derivative of v 
[19]. 

Lemma 4.3. Suppose that Tj E T., k > 1, bE Wk+LL(Tj), and (4.5) holds for 1 00 

some L > 0. Then there is a positive constant C, independent of j = 0,..., J 
and T' E T., such that for each p', p E Pk(T), we have 

(4.14) ~ E b- 
a 

, ax + EI[bp'p]l 
< Chk+L IIbWk+LkIpII 

The proof of Lemma 4.3 is essentially the same as that of Theorem 4.1.4 
in [13], and hence will be omitted. (Note that L = 0 for the result cited in 
[13], since this is sufficient for the finite element error estimates proved there. 
However, the same argument goes through for L > 0.) 

In order to prove Theorem 4.1 below, we first prove the following key result. 

Lemma 4.4. Suppose that all(x), a12(x), a22(x), a(x) E Wk+L(a2). Also 
assume that Mj has degree k > 1 and (4.5) holds for some L > 0. Then for 
each U, V E MJ, 

L+ 1 
(4.15a) IA(U, V)-A1(U, V)I ? Ch. IIVIIH1(Q)IIUIIH1(Q) if k = 1 

and 
L+2 

(4.15b) IA(U, V) - AJ(U, V)I < Ch1 IIVIIH1(n)IIAjUIIL2(n) if k > 1. 

Alternatively, (4.1 Sb) can be replaced by 
L+2 

(4.15c) IA(U, V) - Aj(U, V)I < Ch1 IIVIIH1(n)IIAjUIIL2(n) if k > 1. 

Proof. Suppose that U, V E Mj and note that UI i, VI l E pk(T'). Applying 

(4.3b), (4.6), Lemma 4.3, and the Schwarz inequality, we obtain 

(Ld UIIHk(TL))1/2 

k+L ~ kL IUI 
(4.16) IA(U,~ V) -Aj(U , V)I < Chji IIVIIHl(n) 

( lgHk(T i)) 

TjETj 

where C depends on the W k+L(0) norm of the coefficients, but is independent 

of j = O, ..., J. (4.15a) now follows immediately from (4.16), since Mj c 
E 

H . Hence, we are left with proving (4.15b,c) (i.e., k > 1). 
To prove (4.15b), let u1 denote the solution of (4.1) with f = A1U. Using 

(4.2), we have 

(4.17) ||ujIIH2(n) < CIIAiU4|2(n) 

and using a standard finite element error estimate [13], we have 

(4.18) 11u1 - UIIH1(n) < ChjIIujIIH2(n). 
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By approximation properties of finite element spaces [13], we may choose a 
function UI E Mj (e.g., the interpolant of uj at the nodes) such that 

(4.19) 11u1- U IIH'(i) < ChillUillH2() VT} ET' 

Furthermore, it follows from (A.7) in [20] that 

(4.20) I|UI 1H2(,i) < C|lUjH2( i) VT1 E Tj. 

Since the mesh is quasi-uniform, we have the following inverse inequalities 
[13]: 

(4.21) IIVIIHs(r) < Ch IIIVIIHr(I) VV EMj, O< r <s <k. 

Combine (4.19)-(4.21) and the arithmetic-geometric mean inequality: 

IIUII2k(T5) ? Ch 2(k-2)(IIU - UII12(2 + IIUIII2 ) 

(4.22) < Ch-2(k-2) (hf2l - UII11I( I) + I IuI IIH2(lj)I ) 

<Ch-2(k-2)(h-2lluj - UI1(I) + I/UjIIH2(2l)) 

Now combine (4.17) and (4.18) with (4.22) and sum over all triangles Tj: 

(4.23) H IIUkIT < Ch2(k-2)IIAiUL2(). 

(4.15b) now follows from (4.16) and (4.23). 

The proof of (4.15c) follows along the same lines as that of (4.15b). In this 

case, u; is taken to be the solution of (4.1) with f = A1U. Hence, U is 

the discrete approximation of uj with the stiffness matrix approximated using 

numerical integration. A1 U is now replaced by A1 U in (4.17). Furthermore, 

error estimate (4.18) now follows from the proof of Theorem 4.1.6 in [13] (i.e., 

optimal energy estimates hold when (4.5) holds with L = 0). The remainder 

of the proof of (4.15c) is the same as that of (4.15b). 0 

We next prove two simple consequences of Lemma 4.4. Note that the injec- 

tion operator will often be omitted when there is no danger of confusion. 

Lemma 4.5. Suppose that the hypotheses of Lemma 4.4 hold. Then 

(4.24a) C' lAjUIlL2(n) < I/A3 U/L2(!n) < CIIAjUIlL2(n) VU E M 

and 

(4.24b) C j1 IIAIUIIL2(f) ? /I 
IIA_U'IL2(n) < ClAj iIAIUIL2(fi) VU E Mj. 

Proof. In view of (4.12), it is clear that (4.24b) follows from (4.24a). To prove 

the first inequality in (4.24a), note that by the triangle inequality and Lemma 
4.4, 

IA1(U, V)/ ? IAi(U, V)/ + Ch1l V//Hi (n)//A UI/2 (n) VU,5 V E M1 
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Also note that 

IIAUII2() =O#EL2~)I(A1U, v)I I(A1U, V) I 
i 

~~054VEL2(ni) IIVII 2 (n) 0j4VEL2 |I VIIL2(n) 

where V is the L2 projection of v into Mj. Hence, 

IIAiu I I L2 () = 0#VM |U V OiVM IV IIL() 

Combining this and (4.21) (with s = 1 and r = 0), 

1A1(U, V)I / 
11 UII U2(Q) _ sup + C IAj UIIL2(Q) 

O#4VEM. II VIIL2(n) 

< (C' + l)IIAjUIIL2(n). 

This proves the first estimate in (4.24a). The second estimate follows in the 
same way. 0 

Lemma 4.6. Suppose that the hypotheses of Lemma 4.4 hold for both Mj and 
Mj_ I. Then for each U E M, 

(4.25a) II(Pj1 -P11l)UIIA < Ch1 IIUIIH1(n) if k = 1, 

and 
L+2 

(4.25b) ll(Pj-1 
- I jl)UIIA__| 

< Chj IIAjUIIL2(n) 
L+2 < Chj IIAjUIIL2(n) if k > 1. 

Proof. Using (4.8), (4.9), and the triangle inequality, we obtain 

lAj1I((P1 -P-1)U, V)I 

(4.26) < lAj_1 (Pj_ 1U, V) - A(Pj_ 1U, V)I 

+ IA(U,V)-Aj(U,V)l VUEM, V EMj,. 

Combining this with (4.1 1) and (4.15a), we deduce for k = 1: 

- PJl)UIIA__ = sup IA((Pi- 
- Pi-1) U, V)I 

- #VEMj-1 II VIIA_ 

L+1 L+1 
< Chj (IIPj-lUII.^+ IIUII H(n)) <Chj IIUIIH'(l)~ 

using the fact that Pj-, is a projection operator with respect to A(, ) in the 
last step. This proves (4.25a). 

Similarly, we may combine (4.11), (4.15b), and (4.26) to deduce for k > 1: 
L+2 

(4.27) II(P11I - Pj-l)UIIA__l < Chi (IIA UII2(n) + IIAj_lPj_lUIIL2(n)). 
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To estimate the last term on the right, note that it readily follows, using (4.9), 
that 

Ajthe=1P1 
= PJ_1Aj, 

where 1denotes the L2 projection from Mi into Mi- . Hence, 

IIAjI1Pj-1UIIL2(Q) = PJ_1 Ai UIIL2(a) < IIAUII 2(Q). 
Combining this with (4.27), we obtain the first estimate in (4.25b). The second 
estimate follows using (4.24a). 0 

We now show that conditions (A.4)-(A.7) hold. 

Theorem 4.1. Suppose that the hypotheses of Lemma 4.4 hold for each j = 
1, ... , J. Then conditions (A.4)-(A.7) hold. 

(a) If k = 1 and L = 0, then a = 1/2 in (A.4). Otherwise, a = 1. 
(b) If k = 1, then a = (L + 1)/2 in (3.3a) and (3.12a) for L > 0 in (4.5). 

Furthermore, a = L/2 in (3.3b) and (3.12b) if L > 0 in (4.5). 
(c) If k > 1, then a =(L+ 1)/2 in (3.3b) and (3.12b) for L > 0 in (4.5). 

Proof. Note that 

(4.28a) ||Pi-I U16H(n) <5 CII UIIH1(0)a 

(4.28b) ||Pi-I U11H1(Q) < Cll UIIHI(n) 

(4.28a) is immediate from (4.11), since Pj1 is an orthogonal projection with 

respect to A( , ). (4.28b) follows easily, using (4.11), (4.28a), and Lemma 4.6. 
(a) Suppose that k = 1 and U E MjA. Using (4.15a) and (4.28b), we have 

A((I U)I ? ~~~L+1 1 12 (4.29) 1Aj((I -Pj_ l)U, U) - A((I- Pj_)U, U) < Ch UIIH(Q) 

(4.29) and the triangle inequality yield 

1Aj((I - Pj_)U, U)I < Ch+ I IUII(Q) + A((Pj_1 - Pj_1)U, U) 

+ 1A(J - Pj_l )U,I U)l . 

Apply (4.11) and (4.25a) to the second term on the right and apply (A.3) and 
(4.24b) to the last term. Hence, 

(4.30) IAj((I-Pj1)U, U)I < L+Ch 2 +CA-IIAUII2 if k= 1. 

Combining (3.7), (4.12), and (4.30), we see that (A.4) holds with a = 1/2 
if L = 0 and a = 1 if L > 1. Finally, if k > 1 and L > O, we apply 
the preceding argument, replacing (4.15a) and (4.25a) by (4.15c) and (4.25b). 
Hence, 

(4.31) 1Aj((I-Pj-1)U, U)j < Ch IIUIIA IIA UIIL2 

+C,)jllAjUll22 if k> 1. 

In view of (3.7), (4.12), and (4.31), we see that a = 1 in (A.4) holds if k > 1. 
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(b) It is immediate from (4.12) and (4.30) that (A.6) holds for L > 0 with 
= (L + 1)/2 in (3.3a). If L > 0, apply (3.7) and (4.12) to the first term on 

the right side of (4.30) to see that a = L/2 in (3.3b). To prove (A.7), we again 
apply (4.11), (4.1 5a), (4.25a), (4.28), and the triangle inequality as in the proof 
of (4.30) to deduce VU, V E M31I, 

(4.32) lAj_1((I-Pj-Ij)U, V)j < Ch, ILUIIA_(Q)IVIIA(Q) 

+A((I-Pj_1j)U, V). 

Since Pj3 is an orthogonal projection operator, the last term in (4.32) vanishes. 
Now combine (4.12) and (4.32) to see that (A.7) holds with a = (L + 1)/2 in 
(3.12a) for L > 0. It can be seen, using analogous arguments, that (A.5) 
holds with a = (L + 1)/2 in (3.3a). Alternatively, (A.5) follows from (A.7) 
and Lemma A. 1 in the Appendix. Finally, it is immediate from the preceding 
results and (3.7) that (A.5) and (A.7) hold with a = L/2 in (3.3b) and (3.12b) 
if L > 0. This completes the proof of (b). 

(c) The proof is similar to that of (b) with (4.15a), (4.25a), and (4.30) re- 
placed by (4.15c), (4.25b), and (4.31), respectively. o 

4.2. Multigrid estimates. We now prove a number of multigrid results for the 
variable % cycle (see (2.6b)) and % cycle (see (2.6a)). We first consider the 
symmetric operator B . 

Theorem 4.2. Suppose that (A. 1) and the hypotheses of Lemma 4.4 hold for 
j= ,... , J. 

(a) If (2.6b) holds with mj > 1, then 

(4.33a) K(BsAj) = O(l) as J - . 

(b) If (2.6a) holds with mj > 1, then 

(4.33b) K(BsAj) = O(l + J) =O( loghj ) as J - oo for k = I and L = 0. 

Otherwise, (4.33a) holds. 
Proof. (a) This follows immediately from Theorem 3.1 and Theorem 4.1 (a). 

(b) This follows from Theorem 3.2 and Theorem 4.1(a). E 

It follows from Theorem 4.2 that Bs can be used effectively as a precondi- 
tioner for conjugate gradient and other iterative methods, even with mi = 1. 
In Theorem 4.3S below, we show that I - BsAJ is a contraction operator with 
contraction number independent of h and J, assuming a suitable constraint 
relating L, mj, ho, and hj. For simplicity, we assume that for the variable 
r cycle, 

(4.34) mj_1 = 2mj, j = 2,.. .,J. 

The more general situation expressed in (2.6b) can be treated in the same way. 
Set h -h and m _mj> 1. 
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Theorem 4.3S. Assume that (A. 1) and the hypotheses of Lemma 4.4 hold for 
j=1,..., J. Define k_ = if k>l and k_O if k=1. 

(a) Suppose that Bs is a variable % cycle and (4.34) holds. Then 

(4.35) -? (1) 2 
< Aj ((I - BsAJ)U U) (2) 2 

with 6(1) and 5(2) defined as follows. If k > 1 or L > 0, then 

(4.36a) 6(1) C(e)hfl+-h (2/3-e)m -(2/3+e/2) VE E (0, 2/3) 

and 

(4.36b) d(2)=,5 CO 

If k = 1 and L = 0, then 

(4.36c) 0(1) C(e)h 1/3-m-(1/3+/2) Ve E (0, 1/3) 

and 

(4.36d) (J =min( + 5J 1 CO +ml/2) 

CO and C(e) are independent of ho, J, and m. Furthermore, 

(4.37) |AJ((I - BsAJ)U, U)| < c5jIU4 -max(6(1), 3J )IIUII2 

(b) Suppose that Bs is a Y cycle (i.e., (2.6a) holds). Then (4.35) and (4.37) 
hold. 6(1) is given by (4.36a) or (4.36c) with h replaced by ho. Furthermore, 
g(2) is given by (4.36b) if k > 1 or L > 0. If k = 1 and L = 0, then (4.36d) 
is replaced by 

(4.36e) 3(2) =min(3+6.r) co m ) 

Before proving Theorem 4.3S, we make some observations. 

Remark 4.2. The exponent of m in (4.36a,c) is clearly not uniquely determined, 
nor is it limited to the values given in these expressions. The main point of 
Theorem 4.3S is that I - B AJ has a fixed error reduction, independent of h 
and J, when max(J(3), a(2)) < 1. It follows from (a) for the variable % cycle 
that 

3J -)3 asm -ooorh --0, 

where 3 in (4.36b) is the same as in Theorem 2.1. Hence, less smoothings may 
be required for convergence for smaller values of h (i.e., larger computational 
problems). It follows from (b) for the % cycle that 

3, -- as m - oo or ho -0. 
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Remark 4.3. The number of smoothings required for I - BsAJ to be a con- 
traction can be further reduced if a more accurate quadrature scheme is used 
on coarse grid levels. For example, suppose the quadrature scheme is exact on 
M for j = 1, ..., JO, where JO = J- jo with jo > 1 independent of J. (If 
the coefficients in (4.1 a) are constant, the quadrature is exact when L = 2 in 
(4.5).) We can now replace ho by hj (and hence h) in (4.36a) and (4.36c) 
for both the %7 and variable %7 cycles. This can be seen from the proof of 
Theorem 4.3S. 

Proof of Theorem 4.3S. (a) For the first estimate in (4.35), we apply Theorem 
3.3. First assume that k > 1. By Theorem 4.1(c), we see that (A.5) holds with 
a = (L + 1)/2 in (3.3b). Applying (4.12) and (3.9c) with c0 = 1/6 +e/2, we 
obtain 

1< ? f1 + ChLh2/3-8M-(2/3+l2)) 

(4.38) J-1 J-1 
< f ( 1 +Ch L(2j)-3el2 213- M-(2l3+el2) 

j=o 

using (4.4) and (4.34) in the last step. Using (4.38), we conclude after a simple 
calculation: 

(4.39) 11 < 1 + C(e)h Lh2/3- M_(2/3+e/2) 

The first estimate in (4.35) with 6(5) in (4.36a) (with k = 1) thus follows from 
(3.9a) and (4.39). If k = 1, it follows analogously, using Theorem 4.1(b), that 
3(1) is given by (4.36a) with k =0 if L > 0 and by (4.36c) if L = 0. (In the 
last case, we use (3.9b) with a = 1/2 and c0 = 1/3 + e/2.) 

Next consider the second estimate in (4.35). It follows from Theorem 4.1 (a) 
that a = 1 in (A.4) if k > 1 or L > 0. (4.36b) thus follows from (3.8a) and 
(3.8c) (with a = 1) in Theorem 3.3. If k = 1 and L = 0, then a = 1/2 in 
(A.4) by Theorem 4.1(a). Hence, j(2) is bounded by Co/(Co + m1 /2), using 
(3.8a) and (3.8c). To complete the proof of (4.36d), it thus suffices to prove 

(4.40) 3(2) <a + C(e)h+13-eM-(1/3+e/2) 

To prove (4.40), we apply (3.16a,b) in Theorem 3.4S. It follows from Theorem 
4.1 (b) that a = 1/2 in (3.3a). Now combine (4.12) and (3.16b) (with c0 = 

1/3 +e/2) to deduce 

J J-1 
(4.41) a(2) < a+C E h1/3-cmj-(1/3+e/2) < 3+C E(2)-3e/2h1/3- m-(l/3+e/2) 

j=1 j=o 

using (4.4) and (4.34) in the last step. (4.40) follows readily from (4.41). Fi- 
nally, (4.37) is an immediate consequence of (4.35). This completes the proof 
of (a). 
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(b) The proof is analogous to that of (a) and need not be repeated. Note that 
j(2) is now estimated using (3.8b) instead of (3.8c). Hence we replace (4.36d) 
by (4.36e). 0l 

We next prove an analogue of Theorem 4.3S for the nonsymmetric multigrid 
operator BJ using Theorem 3.3N. Note that the observations in Remarks 4.2 
and 4.3 are also applicable in this case. 

Theorem 4.3N. Assume that (A. 1) and the hypotheses of Lemma 4.4 hold for 

(a) Suppose that BJ is a variable %/' cycle and (4.34) holds. Then 

(4.42a) ||(I - BJ A) UII < ? 3|IU12 

with 

(4.42b) a = 3 + C(e)hhl1/3- M(1/3+e/2) Vy E (0 1/3) 

where a is given by (4.36b) and C(e) is independent of ho, J, and m. 
(b) Suppose that BJ is a 2 cycle. Then (4.42a) holds with h replaced by 

ho in (4.42b). 

Proof. (a) This follows from the same argument as in the proof of (4.40) in 
Theorem 4.3S. In the present case, we apply Theorem 3.4N (with a = (L+ 1)/2 
and co = 1/3 + e/2 in (3.13b)). 

(b) The proof is analogous to that of (a). 1E 

Remark 4.4. The numerical quadrature analysis for three-dimensional problems 
goes through in the same way as for two-dimensional problems. Hence, ana- 
logues of the rpultigrid results in this section also hold. Note that the system 
of equations resulting from finite difference discretizations do not typically fall 
in the variational multigrid framework. However, it is known that many finite 
difference schemes in two and three dimensions can be obtained by applying 
the finite element method with a suitable numerical quadrature. We refer to 
[13] (see the exercises at the end of ?4.1) and [14] (see ?4.3) for several ex- 
amples illustrating this. Hence, multigrid estimates for these finite difference 
schemes also follow from the preceding results. In particular, standard second- 
order centered difference schemes can often be obtained from a finite element 
method with piecewise linear elements and a quadrature scheme that is exact 
on constants (i.e., k = 1 and L = 0 in (4.5)). 

APPENDIX 

We prove Theorems 3.3, 3.4N, and 3.4S of ?3. We begin with 

Lemma A.1. Suppose that C-' 1 < J 1 < CAJ IThen 

(a) (3.3b) implies (3.3a), and (3.12b) implies (3.12a); 
(b) (3.12a) implies (3.3a). 
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Proof. (a) Since Ai is positive definite symmetric, it follows, using (2. la), that 

(1) IIAUllj ? IIIA /211 IjIIA'2UIIj 
= A,211UIIA1 VU E 

where III llj denotes the operator norm on Mj. The proof of (a) follows 
immediately from (1). 

(b) (3.12a) is equivalent to 

(2a) IAj_1((I - Pj1 j)U, V)I < C2AJI||UIIA_ IIVIIA_ VV E M>i. 

Setting V = U, we obtain 

(2b) lIIjUlI24 < llUl4_ + C2A7fIIUII2 VU E M1_ 

Define the operator norms of Ii and Pj11 by 

llP11 UIIA 
IIpj-lIllA max IIUIA, 

and 

IIIIIIAl max 
ijUIIA. 

#A 
- 

sUEMj-> 11 UIIA 

Since Pj_ and Ii are adjoints, their operator norms are equal. Hence, it 
follows from (2b) that 

(3) j_ P11jj_ 12 CLa )~ ~~~~~A {{Illj||jlAj- 
< 1 + C2Aj 

(3.3a) now follows from (3). o 

We also use the following lemma, proved in [16, Lemma 4.1]. 

Lemma A.2. Suppose that Bs is the symmetric %7 or variable %7 cycle given 
by Definition 2.1 and that 3, for j = 1, ... , J satisfies 

(4) -Aj((I-IjPj_ )K7jU,K7jU) ?jjIIUIj2 VUeMj, j=1,..., J. 

Then the constant "1 in (3.1) satisfies 

J 

(5) i1f< (1 + cj)a 
j=1 

Proof of Theorem 3.3. Estimates (3.8a), (3.8b) follow using (3.1) and (3.5). 
(3.8a), (3.8c) follow from (3.1) and (3.2a). We next prove (3.9a), (3.9b), using 
Lemma A.2. If (3.3a) holds, it follows readily, using (3.7), that for each U E 
MAd, 

- A-((I - IjPj_ )K7j U, K7j U) 

? C2C3abOa IIAK7JU~mj u2ao . IK7'UI2-2ao 
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Combining the last estimate with (2.8), (3.1), Lemma 2.1, and Lemma A.2, we 
obtain (3.9a) and (3.9b). The inequality in (3.9b) follows using (3.4), since each 
m1 > mi . The proof of (3.9a), (3.9c) is essentially the same. It is immediate 
from (3.8a) and (3.9a) that (3.10a) holds with 3j given by (3.10b). Finally, 
it follows from (3.8b,c), (3.9b,c), and (3.1Ob) that 3i < 1 for m sufficiently 
large. O 

In the remainder, we set m _ mi . The proof of Theorem 3.4N is based on 
the following lemma. 

Lemma A.3N. Suppose that (A. 1), (A.6), and (A.7) hold. Also assume that for 
some J > 1 and Si-, we have 

(6) 1(I - BJ A ) UII<__ < (3 + 2J1)IIUII_ VU E MJ 

where 3 is defined by (3.14a,b). Then 

(7) II (I - BJAJ)UII2< Ull + (3-I + J)IIKJUII6 VU EMJ 
where 

(8) 2j < C2AJ (4 + 33JlI + 4C2A7 + 2C2AL7Jj 1). 

Proof. It follows from Lemma A. 1 that (A.5) and (A.6) hold with Ej given by 
(3.3a), and that Fj in (A.7) is given by (3.12a). Applying (2.7N), we have 

E _(I - BJ A 2)UIIA 

(9) J_~= 11( - IJPJ1)KJ UII 
+ IIIj(I - Bj_,Aj)P_,KmUIIA 

+2AJ ((I - IjPj_)Kjm U,~ IJ (I- BJ-1AJ_1)PJ_1KJmU) 

We apply (3) to deduce 

11 (-IJPJ_ 1 )KJ UAi < AJ((I -I_PJ 1)KJU, K7U) 

(10) + C2J L _IPJlKAUIIA 

< AJ((- IjPj_ )Kj U, KJ U) 

+ C2AL7(1 + C2AJ7) IIK UIIA 

To estimate the second term on the right side of (9), we combine (3) and (6) 
to obtain 

IIIj(I - BJNAj_,)Pj_1KjmUII2 

< (1 + C2AlJa)(3 + AJj_)IlPj_,Km U112 

(1)IPJIIK7 UIIAJ + (3C2J a(1 + C2AJ 

+ IJ 0(1 + C2AJ )A)IIK7UIIA. 
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We also use the identity 

(12) AJ((- IJPJ_I)V, V) + 3IIPJ-I VIA, 

= ( 1 -c)A ((I- IJPJ1)V, V) + 31 VII1 VV E MJ. 

We may now apply (9)-(12) and the symmetry of KJ to see that 

F ? ( 1- c)AJ ((I -IJPJ_1)Kjm U, Kjm U) + AJ (KJ UU, U) 

(13) + (1 + C2A-7 )((1 + 3)C2AJa + J-_l(1 + C2A-J,)))IIKjUIIAJ 

+ 2AJ((I - IjPj_1)KjmU, IJ(I - B> AJ_1)PJ_1KmU). 

To estimate the last term in (13), we apply inequality (2a) with U replaced 

by PJ 1KjmU and V replaced by (I - B_ NAj-.)Pj-1KjmU. Hence, 

12AJ(I-IJPJ 1)KjmU, IJ(I - B 1 AJ_1)PJ_1KjmU)I 

(14) < 2C2AlJaIPK_ 1 11( - BN AJ )PJ_KmUIIA 

< C2AJ (1 + C2A-o))(1 + 3 + dj_ ) lKj UI12 

using (3), (6), and the arithmetic-geometric mean inequality in the last step. 
Next combine (13) and (14), and use the fact that 3 < 1 (by (3.14a)). Thus, 

E < (1 - )Aj((I - IjPj_1)Kj U, Kjm U) 

(15) +3Aj(K mU, U)+j.IIK7 UIIA1 

+ C2A)Ja(3 + 3 + 3J-i + 4C2AJ- + 2C2 21AJ )IIK7UIIA 

We now apply (A.6), with Ej given by (3.3a), and Lemma 2.1 to estimate 
the first term on the right side of (1 5). Thus, 

E < C0C(2m) 1(1 -,)A((I- K;m)U U) 

( 16) + 6Aj (KJ 2U, U) + AJ_ 
m 
sUII12 

+ C2L7 (4 + 33J_1 + 4C2AJ + 2C2IJ1 KJ J )11K7 2J 

It follows from (3.14a) that 

(17) CO(m)- 1(I - 5) = 5. 

Combining (3.14b), (16), and (17), we obtain (7) and (8). 0 

The proof of Theorem 3.4S is based on the following lemma. 

Lemma A.3S. Suppose that (A. 1), (A.5), and (A.6) hold. Also assume that for 
some J > 1 and Si-, we have 

(18) Aj_1((I-Bs_,Aj_,)U, U) < (3+j_1)IIUJI2 VUeMMj, 
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where 3 is defined by (3.1 4a,b). Then 

(19) AJ((I-BSAJ)U, U) <J3UII' +(- +. )jiK7mUj Ij 

where 

(20) 3J < C2AJ(l +j-1) 
Proof. Apply (2.7S) to obtain 

AJ((I-BJAJ)U, U) 

(21 ) =AJ ((I-IJPJ-_1 )KJm U, KJ U) 

+ AJ_-I((I - BS_1,AJ_1)PJ_1,KJ U, PJ_-1KJ U) . 

The proof now goes through in the same way as that of Lemma A.3N. The 
details are less tedious in the present case, since the right side of (21) is easier to 
estimate than that of (9). In particular, condition (A.7) was needed to estimate 
the last term in (9), but is not needed for (21). o 

We now prove Theorems 3.4S and 3.4N. 

Proof of Theorem 3.4S. Recall that (3.3b) implies (3.3a). We use an induction 
argument to prove (3.16a) with 

(22) 6 <6a+ ro)( +Ci))*(C3 2 ?(C/2mj?) 

where =I if C3>1 and ?= 0 ifC3?< 1,with C3 in(3.7).ForJ=0, 
this follows trivially, since B0 = . Next assume that J > 0 and 

(23a) AJ_1((I - BS_1AJ_1)U, U) < (6 + 5j 1) 11 UII2 , 

with 

(23b) J < + j )) * C )'C2j (0/2m 

Appyin (28,(:l +C2AIEa)) 
Applying (2.8), Lemma A.3S, and (23a,b), we deduce 

A ((I-BSA )U, U) 

< 3IIUIIAI +311(l + C2A )IIKJ7UII1 + C2AK71||KJ7UII2 

(24) ? (3 ( ]= + -e C2(eo)fc aeo(C) ? II UIIA4 

+ C2?Al IKJ UIIA A 

To estimate the last term in (24), combine Lemma 2.1, (2.8), and (3.7). Hence, 

(25) 7 ||KrnJ U IIA ? (C3o)-m) 
I (C/2m)o || U . 
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Finally, we combine (25) with (24) to conclude that (3.16a) holds with 5(2) 

satisfying (22). 
(3.16b) follows readily from (3.4) and (22). To prove (3.17a)-(3.17c), apply 

(3.16a) and Theorem 3.3. 0 

Proof of Theorem 3.4N. Using (3.4) and (8), we have 

(26) as < C2)7 (4+4C2y7 +5_ 1(3 +2C2Ya)). 

Since C2 and ya are fixed constants, we may apply the induction argument used 
in the proof of (3.16a,b) in Theorem 3.4S with the right side of (26) replacing 
the right side of (20). This proves Theorem 3.4N. o 
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